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INTRODUCTION (Su) (p) :a f Y(p,q)(q) dsq;

In [1, the authors considered the problem of (5) 3D
finding the optimal surface current on a cylin- (Dr)(p) c (q ) dSq.
der which maximized the power radiated in an (aD an q
angular sector. That approach to antenna syn-
thesis is further developed here in the context We also define, p e aD,
of a scattering problem. Specifically we prove
the existence of an optimal impedance for a (6) (KI) (p) :- (DO)(p).
general cylindrical surface; optimal in the
sense that when a field is incident upon the Note that K: L;(3D) - L2 (0D) is compact, e.g.
surface, the power scattered in an angular sect- [71, and denote its adjoint by K*. For surface
or is maximized. layers in R , the usual jump conditions hold

for these densities, at least almost everywhere
We consider an infinite cylinder of arbitrary on 3D and this remains true in t', i.e.,
cross-section in the presence of either 9 or
if polarized incident fields. It is known, e.g. -, (S)(p) (±u+Kw)(p),
(), that under suitable restrictions on the an-
geometry and constitutive parameters of the (7)
scatterer, among which is a requirement that the lim (Du) (p) - (±u+F*) (p)
radius of curvature be large relative to skin p - aD
depth, the transition conditions at the surface
of an imperfectly conducting scatterer may be where K is the complex conjugate of K.
replaced by so-called impedance boundary condi-
tions. Then if D+ and 0- denote the domains With this notation, representations of solutions
exterior and interior respectivelX to a simply of the Helmholtz equation obtained by applying
connectod-closed curve 3D in R4, the scat- Green's Theorem or the Helmholtz representation
taxing problem nay be redyced to finding a lead to the following representations for us

scalar function u(p) - uy(p)+us(p) such that and ui

)D !anL% y(P,q)-u(q) !I-nq ) d.,(1) (V +k )u~ (p) - 0, p e D+ f3D {n 3u an yp)- M q J-( }d

(2) a -ikuS - 1(/r1/2 ) ( 2uS(p), p 6 D+u 
S au 5 (p)-(DuS) (p)  uS (p), p 6 30

(3) au +1(p)u - 0, p r aD 0 , p

where ui is a jnown incident field, p - (x,y) and
is a oint in R" with magnitude r - p p e
/X +y' and 3/3m is the derivative in the () ( )()-[s U u(p) p 6D
direction of the outer normal to 3D, pointing (9) (pu u ((p- Sp u 3D
from 3D into D+. Here u denotes the non- 2ui(p), p e D.
vanishing, 2-component of either E or R,
depending on the polarization, and n(p) de- These relations may now be used to derive a pair
notes the equivalent surface impedance. The of boundary integral equations for the total
boundary 3D is assumed here to be Lyapunov of field. First note that, with (6) these relation
order I (e.g. (71) which ensures that the unit may be written, for p e 3D, as
normal at p, is Lipschitz continuous on
3D. p10) u .S(auS K.*I-n 3 ,
EQUIVALENT INTEGRAL EQUATIONS (11) ui - K*u.S

Let R(pq) denote lhe distance between two Consequently
typical points of R . A fundamental solution au
of the Helmholtz equation will be denoted by (12) u ui +us - 2u +S - u
y(p,q) which for convenience we normalize as

S(~1) Invoking the boundary condition (3) this may be
(4) y(p,q) - - (kR). rewritten as

Furthermore we let Van and 3/3n+ denote (13) (I Sn+R*)u a 2ui,
the normal derivative wh n p - aD from D_
and D+ respectively although the direction where, we emphasize, u' is the known incident
is always that of the outer normal, field. Likewise since

As in (21the single and double layer distribu- (14) u (P) - I [ 1 theauil (p), p e D
tions at p 4 R' with density 4 6 L2(0D) will
be denoted by (80p) ( a and (Du) (p) respec- and
tively, i.e., (15) ui(P) - 1 uis(aui_(P), p 6

a- , -.

'U. ?A U I I KLl. .~
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we have, taking normal derivatives and using the the functional
jump conditions for the derivative of a single 21
layer, (25) 0Q(fn) -o J (O)If(,)I2 do

(1 '3 n" is a maximum. Here m(O) is the characteristic
function of a subset a C (0,2v) and Q rep-

and resents the far field power flux through the

(17) 
u i - -. Iu + I DnU set a, or the integral of the differential
n LTn-' _ n scattering cross section over the set

It follows then, with the boundary condition An alternate treatment of this problem in the

(3). that the total field u must satisfy the case when k and n are real is given by
equation Kirsch (5). That analysis is based upon the

aui existence of a unique solution of the exterior
(16) (-rXn+ Dn)U - 2 Robin problem proved using a layer ansatz which

n- *results in a single boundary integral equation,
In (2] the authors have shown that in 

3  
thi rather than the pair (20)-(21), where the kernel

pair of integral equations has a unique solution is no longer the free space Green's function but

which gives rise to a solution (in an appropri- is modified as suggested by Jones (41. The idea

ate generalized sense) of the exterior problem. of using the uniqueness of sol itions of the
That approach may be followed in R

2  
and the boundary integral equations to e-ablish compact-

corresponding result is contained in the follow- ness properties of the set of admissible pairs

ing. is found in [5). The situation here is more
general and the proofs are, consequently, more

Equivalence Theorem: complicated.
For this problem, we wish to prove the existence

Let n 4 L.3)D), In k > 0 and Im (Fn) > 0. of an optimal choice no 6 U where U is a
Then u = ul+u

e  
is a solution of the exte;rior closed bounded convex subset of L(301. Notice

Robin problem that, since L.(OD) is the dual space of L(O3DL

i U (G u, u U is weak* sequentially compact. Furthermore,

2(D+); U, jn 6 L2 (30) since L1(0D) is separable, the relative weak*-
(2k 2 )s 2 2 topology on the set U is metric (see Dunford

ii) ( k2)u
s 

- 0, p D+, (9+k2)u-0 and Schwartz [3; p. 426]). Thus if g: L(0D)
(19) p 6 D X, X a Banach space, then 91U is weak*-

(u19 - /
2  

continuous provided Cn 
°  

in the weak*-topol-
iii) a -iku

s 
- o(l/r oqy on U implies g!

1
( n) -g r(.) in X.

au +'u=a .onThe following results show that lhe map n1 f
iv) ;Ju +nu - 0 a ~e on aD, of U - L2 (0,2w) is continuous with respect to

p the weak*-topology on U. This fact, together

if and only if u is the unique solution of with the continuity of the map Q0- L2 (0,2r)
R will establish the required existence result.

S(20) (Z+S e*)u - 2ui
( ui Recall that, given any n 4 U, there exists a

(21) r(-+Kn+Dn)u - 2 - unique solution u of the boundary integral
an "equations (20)-(21). We will refer to such an

Tl FAR FUgLD OPTIMIZATION PROBLEM impedance-solution pair (n,u) as an admissible
pair. The set of all admissible pairs will be

In the far field, the scattered field u
s  

may denoted by Q.

be written asbe wr ikr Theorem 1: The set Q c L.(3D)xL 2 (aD) is
(22) i a f(e)+o(l/r 1/2 bounded-in the product topology generated by the

norm topologies of L. and L2.
where f(O) is the far field coefficient. Proof: Suppose this were not the case. Since
Since aD is bounded, we may employ the asymp- 1 bounded in L(aD} , any sequence n C

totic properties of v(p,q) together with the U is bounded in the L, norm hence there would

integral representation (8) to represent f(S) as exist a sequence nm,Um} C nr such that

-iki*q(.(q)us(q)  !Umi 12() - as m -. -. Moreover. since U

iSsOk) aD is weak* sequentially compact, we may assume that
(23) i nm n 6 U in the weak*-topology of U.

au- -n(q)ui(q)+ikr• qu (q)) dsq Define functions w 6 L2OD} by

where (cam 8, sin ) and q- (xy ) is
a point on aD. Defining integral opeuatrs 1Pm Um/liuml
KI and 1: L2 (D) - L2 (0,2w) in terms of the Then I'I'mH - 1 and, since (1+Sn )u - 2u

i
,

kernels qikr
'
q and . respec- 2ui

tively, we may write f as (26) (I+*Sm)*m -7-

(24) f(s) a Kl(rnu )- EK2us KI- Mu But ui is a fixed incident field and so, as

Note that the far field is determined u perh i2ut/h e ltalil "n0. furthermore, after
(via the unique solution of the boundary - ha the extraction of a subsequence, it e -
gral equations) by the impedance n weakly in L21(0) since IIml 3. for all m.

Now the operator P' is compact on L2(00) and

The preliminary remarks allow us to pose a so * s - K* strongly in L2 (3D). Likewise,
meaningful optimisation problem. It consider after perhaps the extraction of a further sub-
the impedance, n, to be at our disposal and sequence, we may assume that the sequence (nm*m)
ask for those n which are optimal with respect is weakly convergent to a function a 4 L2 (OD).

the The compactness of the o rator S now guaran-to eoa oritriom expressed in terma of testa Sn*3*S togyen o~
induced far field. -so-r* stronhla in (D) since sais-

fist equation (26. SuEa since * w, weatly,
Specifically, for a given closed, bunded conve w see tato ( m u since m weakly,euJet ofL D)oal e €8s' 8- - -" we as* that must satisfy the homogoneous
subset U of .30) cotrls7Tn ca at equation
adissible controls, find no0 4 U for which euto



(27) (I+W*)*+0 - 0. Theorem 3: The map n f defined by the far
fied rerat ion

This result, together with the strong convergece -31wi/4 e
of ,. to t*.+So, implies that , . f ee) i (q3

strongly In L2(A ). 
(35) "1 faD

On the other hand. s3 * * stronqly in L2(00) - - -n(q)u (q)+ikr.n U (q)) do
Implies that n,*, n # weakly in -2 (0 0) 

q q

since, for any -e 12(3 0D)o where u - u-u
i  

for u the solution of (20)-

(21) and .- (coo B. sin 0), is continuous from
the wsske-topoloqy of L.(0) to the strong

(26) -C (nII#1H 1-n)(P ) do topology on 2(0,2w).
- ' 3  ~Proof: To see this, let (nm ) be a sequence in

But O3 n strongly so that the first irm on te-closed bounded convex sot U C L. D) such

the right converges to zero while the second that nm * n in the weak*-topoloqy. Then to

term likewise converges to zero since q n each ri there corresponds a unique solution

in the weak*-topology of L,(30) and T e u of the pair of boundary integral equations

L (D). So, in fact, n * - r weakly, (20)-(21). Hence the sequence of functions nm

h~nce Srn - Sn$ in 1?30), and the function generates a sequence of admissible pairs

h satrsf, h ((*a,_m)) c n. Since according to Theorem 1,
the class 9 is bounded there exists at least

(29) (I+K+Sn)iP - 0. a subsequence (( m iu1 
)
) such that ni - n

in the weak*-topoloy, us - u e L(3D) weakly,

ao, consider the sequenc and the sequence of producis ns U j converge

(30) On 0m -(2 n i-d-;n -(-nM+Knm)*3 . weakly to some # e L2(3D).

We know from the construction of the sequence As in the proof of Theorem 1, it follows from

(on) that on - # in LOU) while qn * the compactness of the operators Jr* and ,

n, weakly in 1,(20D). Hence the compac'sess that indeed the functions um converges

of the operator K implies that the functions strongly to the function u and so, by Theorem
Dn*m converge weakly in L2(aD) to C : 2, the pair (n,u) belongs to 0.
-,-Kn*. Moreover, since * is a solution of
(29), the results of section IV of 121 show Returning now to the original sequence (us)
that ) e P(Dn). We wish to show that, in fact, of solutions, we so in fact that um - u in
on p  .L2(D). Indeed, if this were not the case, then

we could consider the sequence (am) consisting
a this end, let € e C

1
(0D) and note that of all those elements of the oriqinAl sequence

a V(D*) (see (61). Look at the functional on which do not appear in the convergent subsequence
Z-2(;D) defined b . Then we have (us. Again we could extract a subsequence

(31) ( Dn -C,*) 
= 
,on*-nm*e*+Dnnui-*• which converges weakly to some v 4 L2004

Applying the argument above to this new subse-
The scnd tam on the right converge* to zero quence, we conclude that the pair (n,v) boeon,:.
since D n * C weakly. The first term on the to 2. But the uniqueness of solutions of (20)-
right sli to rewritten as (21) for each ni C L6 ()D) implies that v - u.

(32) (-'ta*e - (*-*t,D~*t We have, then, that u, - u strongly in L2(aD).
and u. * nu weakly in L(4D). Denoting the

which converges to zero since #s,** strongly far fiili associated with um by fm and re-
in 1,2(D). Hence Dn C and so satis- calling the definition of the far field (23), we
fle the equation see that f can be written in tOrms of um-ui

(which converges strongly to u-u') and two
(33) Dn* = n#-Kfl* compact operators Ki and K2  which map

or L(3D) * L2(0,2w). pecifically

(34) (-n+K +D8)* - 0. fmrs) - 1 l(tn(u-u i)
]-K2 ((u5 -u I)

ut the pair of integral equations has a unique (36) +K 1(u
I 

+ I
solution so that, again we conclude that * - 0 Tn_ +%u
which is a contradiction since *n - * in and so
L.(30D) and 11t.11 - I. Ne conclude, there-
fore, that 0 is bounded. fm . KI(n(u-u i)1]K2 [(u'u) ,

Theorem 2s Let L.(0D)xL2(3D) be equipped (37) -- 1+ 1
WIiF-e-product topology relative to the weak*- K -

u

topology on L.0(3D) and the norm topology on
L, (3D). Thea the set of admissible pairs strongly in 1(0.2w).

Scloeed with respect to this product tpoogy. We may nov show that our optimization problem has

Proof- mere we asme that we are given a an optimal solution in 0.
sequence of admissible pairs Om, u))c a
such that n, * n the weak*-topology of Theorem 4: Let 0 be the class of admissible
I%( ), and us - u strongly in L (3D). We -i-sdlrined above and let Q. be defined as
mst show that (nu) a O. We use he bounded- in (25). Then there exsats a pair (na0 ,u 0 ) a
ses of 0 to ensure that there is a * 4 such that
LIM(S) such that r%% * * weakly, and them
a" the fact that the pairs are admissible to (3) Q(n0,u0) t Qs(n,u) for all (n,u) 4 0.
show tat the functions u converge strongly
to 2u'-R*u-84. The proof now proceeds in a Proofs -This result follows immediately from the
manner completely analogous to the proceeding observation that, in light of Theorem 3. the map
proof, and we need not repeat it here. n * 0 (s,u) is a continuous mapping from L.(OD) -

L2(0,1w) defined on the weake-sequontially

-. . I



a

compact set U C Lw(3D).

Moreover from the results proven above we have
the following.

Theorem 5: If {fm,um} C S is a minimizing
sequence such that nm - n weak*. Then
the unique solution u0 o? (20)-(21) asso-
ciated with no is the optimal total field
and um - u0  strongly on 3D.
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